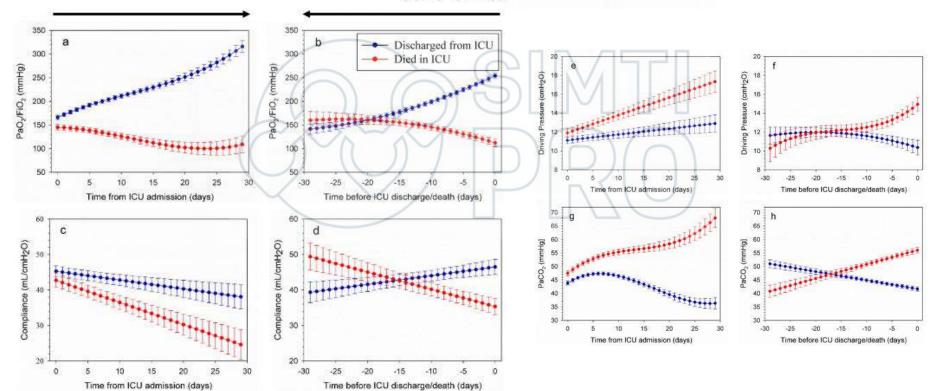


Terapia di supporto nel COVID


il punto di vista dell'Intensivista

ICU

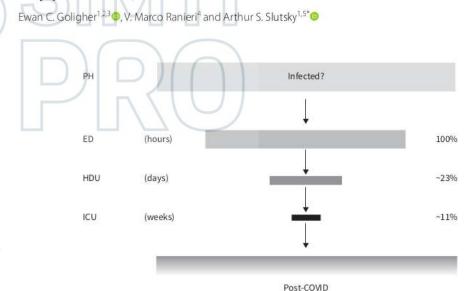
Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

Ventilazione invasiva

COVID-19 pneumonia: pathophysiology and management

Luciano Gattinoni ¹, Simone Gattarello¹, Irene Steinberg¹, Mattia Busana ¹, Paola Palermo¹, Stefano Lazzari¹, Federica Romitti¹, Michael Quintel^{1,2}, Konrad Meissner¹, John J. Marini³, Davide Chiumello⁴ and Luigi Camporota⁵

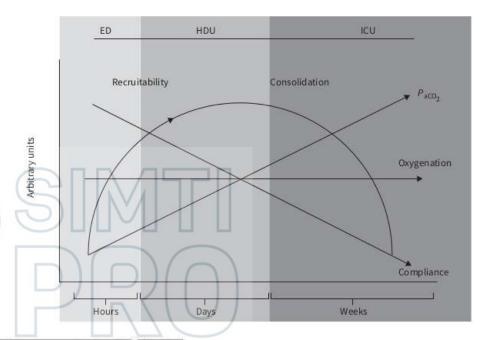
Discordance between respiratory mechanics and oxygenation


Initial manifestations:

- hypoxaemia
- vasocentric injury
- high gas lung volume

COVID-19 and ARDS: the baby lung size matters

Luciano Gattinoni 10, Mattia Busana Luigi Camporota, John J. Marini and Davide Chiumello


Is severe COVID-19 pneumonia a typical or atypical form of ARDS? And does it matter?

Ventilazione invasiva


Unresolving disease progression:

- Inflamed non-oedematous nonatelectatic lung
- Increased oedema and atelectasis phase
- Eventually fibrotic lung structure in the late phase

Ventilazione non invasiva

COVID-19 pandemic and non invasive respiratory management: Every Goliath needs a David. An evidence based evaluation of problems

J.C. Winck a,*, N. Ambrosinob

Phenotype: normal compliance, "silent hypoxemia"

- P/F < 200
- Early presentation
- Prone position

Work of breathing

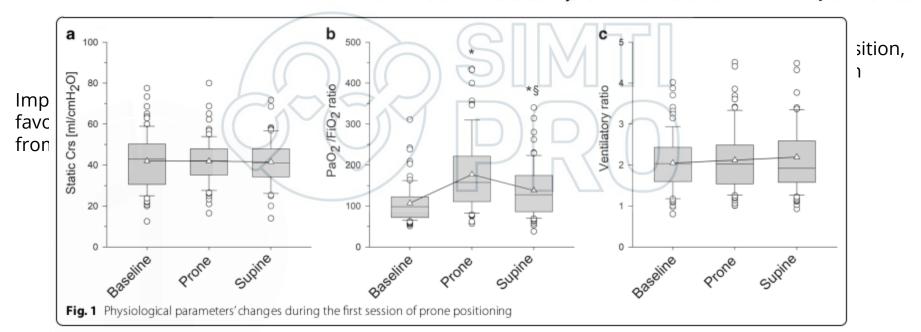
Protective lung ventilation: 6-8 ml/kg

RESEARCH Open Access

La posizione prona

Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients

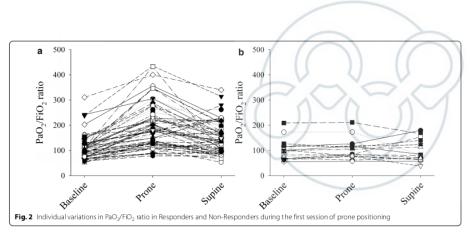
Improvement of the V/Q matching, favoured by a redistribution of flow from dorsal to ventral lung area.

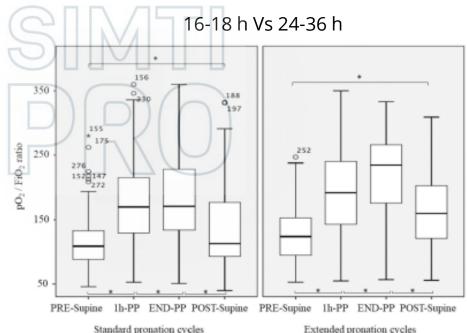

CO2 production somehow increased during prone position, requiring an increase in minute ventilation to maintain stable PaCO2 values

Lung recruitment was not the major mechanism

RESEARCH Open Access

La posizione prona


Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients



RESEARCH Open Access

La posizione prona

Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients

Short and long-term complications due to standard and extended prone position cycles in CoViD-19 patients[★]

Alberto Lucchini ^{a, *}, Vincenzo Russotto ^b, Nicola Barreca ^a, Marta Villa ^a, Giulia Casartelli ^c, Yelenia Marcolin ^c, Barbara Zyberi ^c, Domenico Cavagnuolo ^c, Giacomo Verzella ^c, Roberto Rona ^a, Roberto Fumagalli ^d, Giuseppe Foti ^a

MRC Test results in patients undergoing three months follow-up visit.

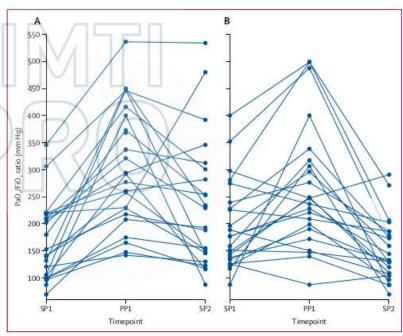
Muscle	Side	MRC Scale	MRC Scale					
		Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	
Shoulder adductors	Left	0 (0%)	0 (0%)	0 (0%)	1 (2%)	12 (21%)	45 (78%)	
	Right	0 (0%)	0 (0%)	0 (0%)	2 (3%)	8 (14%)	48 (83%)	
Elbow flexors	Left	0 (0%)	0 (0%)	0 (0%)	0 (0%)	8 (14%)	50 (86%)	
	Right	0 (0%)	0 (0%)	0 (0%)	1 (2%)	6 (10%)	51 (88%)	
Wrist extensor	Left	0 (0%)	0 (0%)	0 (0%)	0 (0%)	7 (12%)	51 (88%)	
	Right	0 (0%)	0 (0%)	0 (0%)	1 (2%)	6 (10%)	51 (88%)	
Hip flexors	Left	0 (0%)	0 (0%)	0 (0%)	0 (0%)	9 (16%)	49 (84%)	
	Right	0 (0%)	0 (0%)	1 (2%)	0 (0%)	8 (14%)	49 (84%)	
Knee extensors	Left	0 (0%)	0 (0%)	0 (0%)	0 (0%)	9 (16%)	49 (84%)	
	Right	0 (0%)	0 (0%)	0 (0%)	0 (0%)	8 (14%)	50 (86%)	
Foot dorsiflexors	Left	1 (2%)	0 (0%)	0 (0%)	1 (2%)	9 (16%)	47 (81%)	
	Right	0 (0%)	2 (3%)	0 (0%)	1 (2%)	8 (14%)	47 (81%)	

Research Article

Short and long-term complications due to standard and extended prone position cycles in CoViD-19 patients[☆]

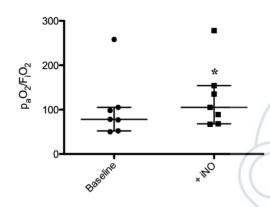
Alberto Lucchini ^{a, *}, Vincenzo Russotto ^b, Nicola Barreca ^a, Marta Villa ^a, Giulia Casartelli ^c, Yelenia Marcolin ^c, Barbara Zyberi ^c, Domenico Cavagnuolo ^c, Giacomo Verzella ^c, Roberto Rona ^a, Roberto Fumagalli ^d, Giuseppe Foti ^a

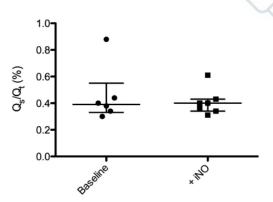



rade 1	Grade 2	Grade 3	Grade 4	Grade 5
(0%)	0 (0%)	1 (2%)	12 (21%)	45 (78%)
(0%)	0 (0%)	2 (3%)	8 (14%)	48 (83%)
(0%)	0 (0%)	0 (0%)	8 (14%)	50 (86%)
(0%)	0 (0%)	1 (2%)	6 (10%)	51 (88%)
(0%)	0 (0%)	0 (0%)	7 (12%)	51 (88%)
(0%)	0 (0%)	1 (2%)	6 (10%)	51 (88%)
(0%)	0 (0%)	0 (0%)	9 (16%)	49 (84%)
(0%)	1 (2%)	0 (0%)	8 (14%)	49 (84%)
(0%)	0 (0%)	0 (0%)	9 (16%)	49 (84%)
(0%)	0 (0%)	0 (0%)	8 (14%)	50 (86%)
(0%)	0 (0%)	1 (2%)	9 (16%)	47 (81%)
(3%)	0 (0%)	1 (2%)	8 (14%)	47 (81%)

Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study

Anna Coppo, Giacomo Bellani, Dario Winterton, Michela Di Pierro, Alessandro Soria, Paola Faverio, Matteo Cairo, Silvia Mori, Grazia Messinesi, Ernesto Contro, Paolo Bonfanti, Annalisa Benini, Maria Grazia Valsecchi, Laura Antolini, Giuseppe Foti




Rodin's Thinker: An Alternative Position in Awake Patients with COVID-19

	Baseline Supine (Supine _{PRE})	In Rodin's Position (Rodin)	After Resuming Supine Position (Supine _{POST})	
Flo ₂ , %	60 (50.0–77.5)	60 (50,0-77.5)	60 (50.0-77.5)	
PEEP, cm H ₂ O	10 (8-10)	10 (8-10)	10 (8-10)	
Arterial blood gas pH Pa _{Oz} , mm Hg Pa _{COz} , mm Hg	7.45 ± 0.03 86.9 ± 26.3 35.1 ± 4.6	7.45 ± 0.04 185.2 ± 81.6 35.1 ± 4.6	$7.45 \pm 0.04 \\ 130.0 \pm 63.4 \\ 36.0 \pm 3.8$	
Respiratory rate, breaths/min	24.7 ± 5.6	23.2 ± 4.0	22.5 ± 3.8	
Platelets, 103/μΙ	266.0 (208.0–345.0)	_	<u> </u>	
C-reactive protein, mg/L	8.1 ± 6.4	_	-	
D-dimer, ng/ml	411.0 (313.5–862.25)	_	-	

Ossido Nitrico

Effects of inhaled nitric oxide in COVID-19-induced ARDS – Is it worthwhile?

Christopher Lotz¹ | Ralf M. Muellenbach² | Patrick Meybohm¹ | Haitham Mutlak³ | Philipp M. Lepper⁴ | Caroline-Barbara Rolfes² | Asghar Peivandi⁵ | Jan Stumpner¹ | Markus Kredel¹ | Peter Kranke¹ | Iuliu Torje² | Christian Reyher²

Improved oxygenation was not only explainable with decreased of pulmonary shunting

iNO action including:

- Regulation of angiotensin II receptors
- Inhibition of platelet aggregation
- Surfactant function
- Antiviral properties
- Alterations of the immune response

COVID-19 IN INTENSIVE CARE

ECMO

What's new in ECMO for COVID-19?

Graeme MacLaren 1*6, Alain Combes 2.3 and Daniel Brodie 4.5

Extracorporeal LifeSupport Organization (ELSO) registry (213 centres across 36 countries):

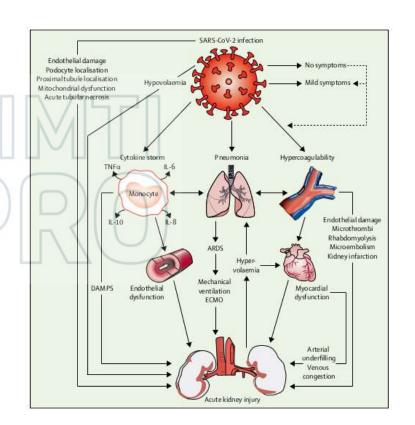
- 1035 COVID-19 patients supported with ECMO
- Estimated cumulative incidence of in-hospital mortality 90 days after ECMO initiation: 37%

COVID-19 and ECMO: the interplay between coagulation and inflammation—a narrative review

Mariusz Kowalewski ^{1,2,3}*†, Dario Fina^{2,4†}, Artur Słomka⁵, Giuseppe Maria Raffa⁶, Gennaro Martucci⁷, Valeria Lo Coco^{2,6}, Maria Elena De Piero^{2,8}, Marco Ranucci⁴, Piotr Suwalski ¹ and Roberto Lorusso^{2,9}

ECMO therapy and COVID-19 itself are associated with certain, often synergistic changes in hematological and inflammatory status of the patients.

The efficacy of ECMO is largely dependent on centers' experience



Management of acute kidney injury in patients with COVID-19

Claudio Ronco, Thiago Reis, Faeq Husain-Syed

Kidney involvement:

- >40% of cases have abnormal proteinuria at hospital admission
- Acute kidney injury is common affecting approximately 20–40% of patients admitted ICU

Infezioni da MDR

Late-phase

Secondary infections

Hospital acquired infections

Increased risk for

MDR infections

Days from admission

Steroids

SARS-CoV-2 diagnosis

Early-phase:

first 48 hrs

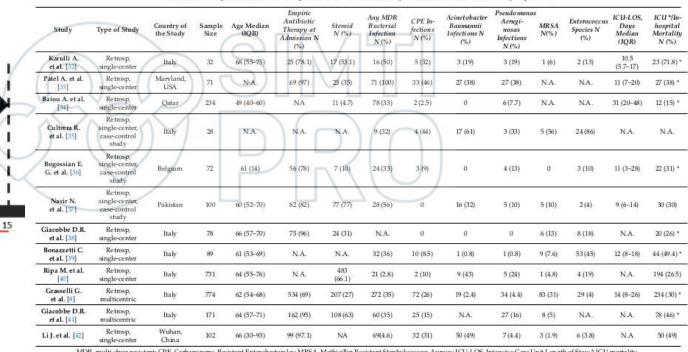
Community

acquired

infections

Co-infections

Hospital/ICU


admission

Review

Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19

Daniela Pasero 1,2,*, Andrea Pasquale Cossu 2 and Pierpaolo Terragni 1,2

Table 1. Summary of the main studies reported data on MDR secondary infections in COVID-19 critically ill patients.

MDR, multi-drug resistant; CPE, Carbapenems Resistant Enterobacterales; MRSA, Methicillin Resistant Staphylococcus Aureus; ICU-LOS, Intensive Care Unit Length of Stay; "ICU mortality.

Infezioni da MDR

Review

Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19

Daniela Pasero 1,2,*, Andrea Pasquale Cossu 2 and Pierpaolo Terragni 1,2

MDR, multi-drug resistant; CPE, Carbapenems Resistant Enterobacterales; MRSA, Methicillin Resistant Staphylococcus Aureus; ICU-LOS, Intensive Care Unit Length of Stay; "ICU mortality

Table 1. Summary of the main studies reported data on MDR secondary infections in COVID-19 critically ill patients. SARS-CoV-2 diagnosis Empiric Pseudo monas Any MDR Acinet obacter ICU-LOS. CPE be-Antibiotic Aenigi-Enterococcus MRSA Country of Age Median Steroid Bacterial Baumannii hospital Type of Study fections. Species N the Study Infection Infections N N(%) Median Mortality Admission N Infections N (%) (%) (IOR) N (%) Early-phase: Late-phase (%) N (%) first 48 hrs Karulli A. Retrosp; 10.5 68 (55-75) 17 (53.1) 16 (50) 5 (32) Italy 25 (78.1) 3 (19) 3 (19) 1(6) 2 (13) 23 (71.8) * et al. [32] single-center (5.7-17)Patel A. et al. Retrosp, Maryland, 69 (97) 25 (35) 71 (100) 33 (46) 71 N-A 27 (38) 27 (38) N.A. NA. 11 (7-20) 27 (38) * single-center USA Community Secondary infections Baiou A. et al. Retrosp. acquired Oatar 49 (40-60) NA 11 (4.7) 78 (33) 2(25) 6(7.7)N.A. N.A. 31 (20-48) 12 (15) * single-center infections Retrosp Cultrera R. single-center. N.A. 9 (32) 17 (61) 24 (86) N.A. N.A. 3 (33) 5 (56) Hospital acquired et al. [35] Antimicrobial resistance research in a post-pandemic world: Insights 4 (13) 3 (10) 11 (3-28) 22 (31) * on antimicrobial resistance research in the COVID-19 pandemic 5 (10) 5 (10) 2(4)Jesús Rodríguez-Baño^{a,b,c,B}, Gian Maria Rossolini^{d,e}, Constance Schultsz^f, Evelina Tacconelli^g, Srinivas Murthy^h, Norio Ohmagariⁱ, Alison Holmesⁱ, Till Bachmann^k, 0 6 (13) 8 (18) N.A. 20 (26) * Herman Goossens¹, Rafael Canton^{m,n}, Adam P. Roberts^o, Birgitta Henriques-Normark^{p,q}, 1(0.8)9 (7.6) 53 (45) 12 (8-18) 44 (49.4)* Cornelius J. Clancy^r, Benedikt Huttner^s, Patriq Fagerstedt^t, Shawon Lahiri^t, 5 (24) 1(4.8)4 (19) 194 (26.5) Charu Kaushic^{u,v}, Steven J. Hoffman^w, Margo Warren^x, Ghada Zoubiane^y, 29 (4) 34 (4.4) 83 (31) 14 (8-26) 234 (30)* Sabiha Essack^{y,z}, Ramanan Laxminarayan^A, Laura Plant^{u,*} 27 (16) N.A. N.A. 78 (46) * Wuhan. Li J. et al. [42] 66 (30-93) 99 (97.1) NA 69(4.6) 32 (31) 50 (49) 7(4.4) 3 (1.9) 6 (3.8) N.A. 50 (49) single-center