Conferenza Nazionale dei Servizi Trasfusionali

Vicenza | 24-26 maggio 2023

La coagulopatia nella trasfusione massiva Elvira Grandone I.R.C.C.S. Casa Sollievo della Sofferenza

e

Università degli Studi di Foggia

La sottoscritta, in qualità di Relatrice dichiara che

nell'esercizio della Sua funzione e per l'evento in oggetto, negli ultimi due anni ha avuto i seguenti rapporti anche di finanziamento con i soggetti portatori di interessi commerciali in campo sanitario:

- Kedrion
- Rovi
- CSL Behring
- Sanofi

Settings

- Trauma
- Peripartum hemorrhage
- Surgery/procedures
- Gastrointestinal bleeding

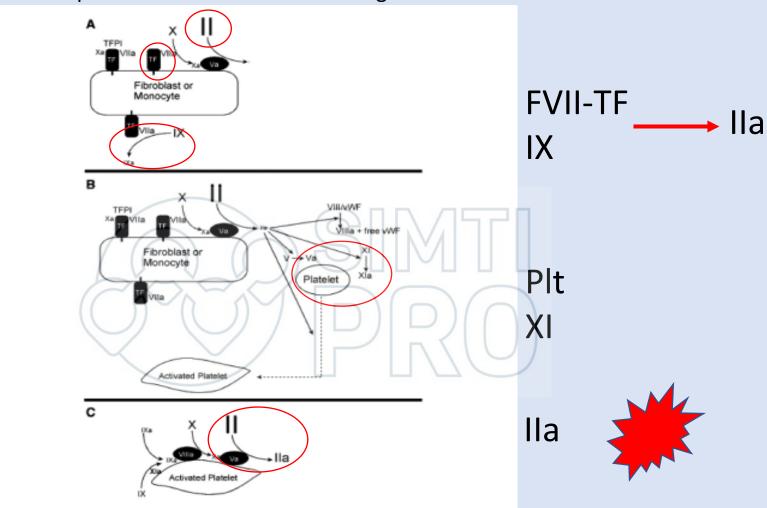
Massive Transfusion

Table 1. Definitions of massive transfusion (MT).

Massive Transfusion (MT) Dynamic Massive Transfusion Replacement of one entire blood Transfusion of ≥ 3 units of PRBCs in volume within 24 hours 1 hour Transfusion of \geq 10 units of Transfusion of \geq 4 units of PRBCs in PRBCs in 24 hours 1 hour with active major bleeding Transfusion of any 4 blood components Transfusion of ≥ 20 units of PRBCs in 24 hours in 30 minutes Rapid bleeding rate is Replacement of 50% of total blood documented or observed volume within 3 hours

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239.

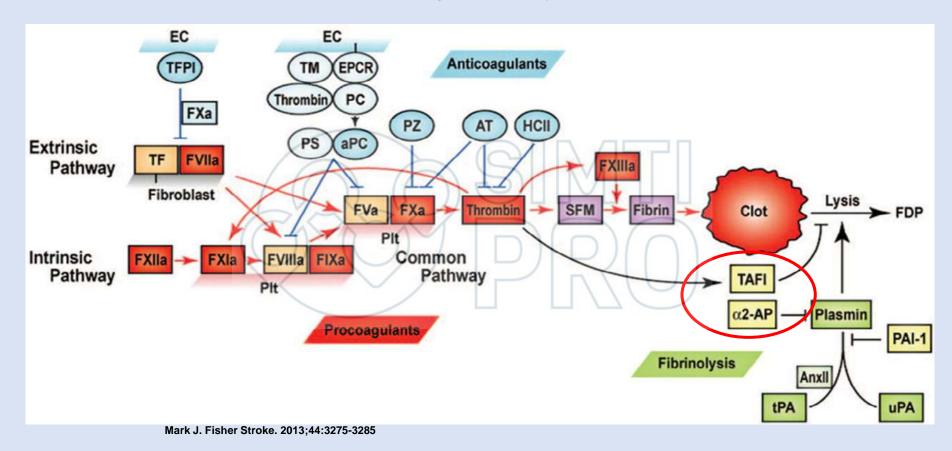
Trauma


Trauma-induced coagulopathy (TIC) results from

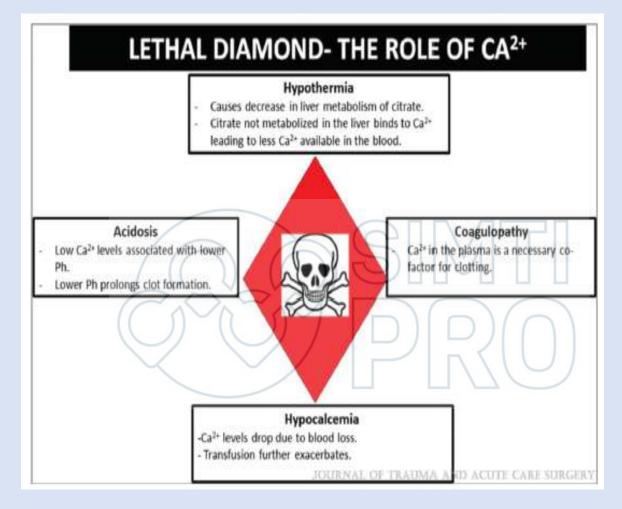
1) acute trauma coagulopathy (ATC) related to tissue injury and shock which occurs immediately

&

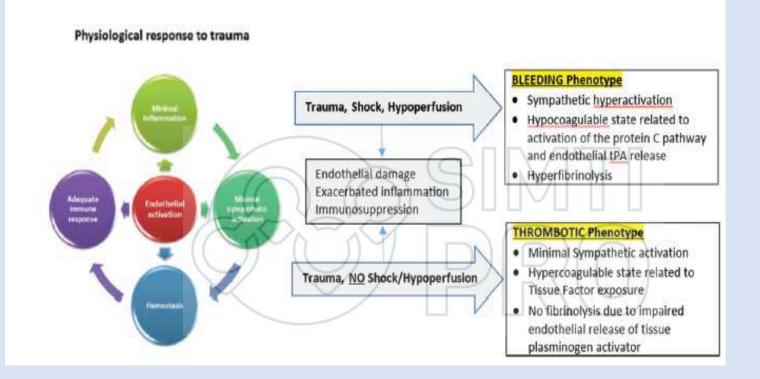
2) resuscitation coagulopathy (RC) related to fluid/blood product resuscitation, hypothermia, acidosis and hypocalcemia


Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Steps in a cell-based model of coagulation and hemostasis


Hoffman M, et al.: A modern view of hemostasis. Hematol Oncol Clin North Am 2007 Feb;21(1):1–11.

The complexities of the coagulation pathways are illustrated here.


Copyright © American Heart Association, Inc. All rights reserved.

Interaction of calcium with the 'lethal triad'

Ditzel RM et al. J Trauma Acute Care Surg. 2020 Mar;88(3):434-439

Physiological Response to Trauma

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

PPH: thrombotic and haemorrhagic phenotypes

Table IV - Clinical characteristics of two women withpost-partum pulmonary embolism

	Pt1	Pt 2	
Age	33	36	
Previous pregnancies, n		2	
Previous CS		2	
Previous pregnancy loss	0	0	
Previous pre-eclampsia		0	
Personal/family history VTE	No	No	
Other pregnancy complications	No	No	
Pre-pregnancy weight (kg)	55	57	
Weight at delivery	66	67	
Gestational week	38	38	
Delivery mode	CS	CS	
Neonate sex	Male	Female	
Birth weight (g)	3,300	3,080	

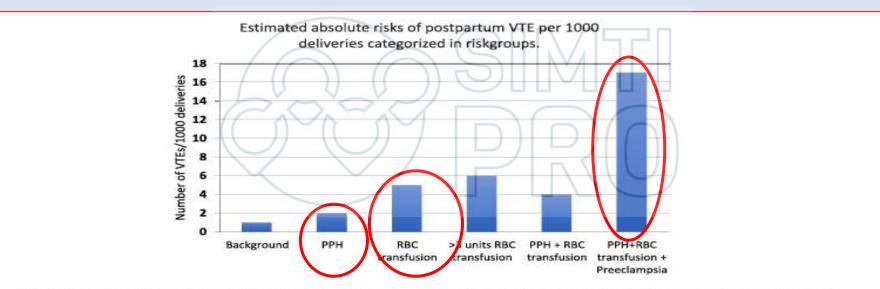
Pt: patient; CS: caesarean section; VTE: venous thromboembolism.

Grandone E, et al. Blood Transfus. 2020 Jan;18(1):13-19.

PPH: thrombotic and haemorrhagic phenotypes

			PATIENT 1		
Date	Before CS 19/6	After CS 19/6	PE 23/6	Discharge 11/7	N.V.
RBC (×10 ¹² /L)	4.09	2.87	3.15	4.28	4.2-5.4 (10 ⁶ /μL)
Hb (g/dL)	12.1	8.3	9.4	12.6	12-16 (g/dL)
Plt (×10°/L)	128	114	116	150	130-400 (10 ³ /µL)
WBC (×10°/L)	7.23	7.42	4.43	2.97	4.3-10.8 (10³/μL)
PT INR	138% 0.9	71% 1.1	15	39* 1.67*	70-130% 0.8-1.2
aPTT ratio	27.9 1.07	2005			20-32 sec 0.8-1.2
	()		PATIENT 2		ANT
Date	Before CS 25/10	After CS 6/11	Pre-hysterectomy 6/11	Discharge 24/11	N.M.
RBC (×10 ¹² /L)	3.48	3.36	2.38	3.56	4.2-5.4 (10 ⁶ /μL)
Hb (g/dL)	11.8	10.0	7	10.9	12-16 (g/dL)
Plt (×10°/L)	176	73.000	55	373	130-400 (10³/μL)
WBC (×10º/L)	8.77	19.7	20.5	7.19	4.3-10.8 (10³/μL)
PT INR	1	98 1.0	122 1.1		70-130 % 0.8-1.2
aPTT ratio	1	30.7 1.2	33,5 1,4	× 1	20-32 sec 0.8-1.2

*During anticoagulation. CS: caesarean section; PE: pulmonary embolism; N.V.: normal values; sec: seconds; RBC: red blood cells; Hb: haemoglobin; Plt: platelets; WBC: white blood cell count; PT: prothrombin time; aPTT: activated partial thromboplastin time.


Grandone E, et al. Blood Transfus. 2020 Jan;18(1):13-19.

PPH: thrombotic and haemorrhagic phenotypes

Patient (age)	PRBC (n)	FFP (n)	PC (n)	Reason for transfusion	Timing
Pt 1 (33 years)	9	7	/	Haemoperitoneum after CS	Post-partum
Pt 2 (36 years)	6	2	1	Uterine atony after CS	Post-partum
Pt 3 (32 years)	2			Anaemia after CS	Intra-partum
Pt 4 (45 years)	2		SIN	Uterine atony after CS	Post-partum
Pt 5 (29 years)	1			Uterine atony after CS (bigeminy pregnancy)	Post-partum
Pt 6 (25 years)	2			PPH after VD	Post-partum
Pt 7 (26 years)	2			Vaginal haematoma after VD (episiotomy)	Post-partum
Pt 8 (31 years)	2	/	/	Anaemia at admission (IUGR foetus), VD	Pre-labour
Pt 9 (17 years)	2	/	/	Uterine atony after CS (mechanical dystocia)	Post-partum
Pt 10 (31 years)	3	/	/	PPH after VD (retained placenta)	Post-partum
Pt 11 (30 years)	2	/	/	Anaemia at admission, CS	Post-partum
Pt 12 (35 years)	3	/	/	Anaemia at admission, VD	Pre-labour

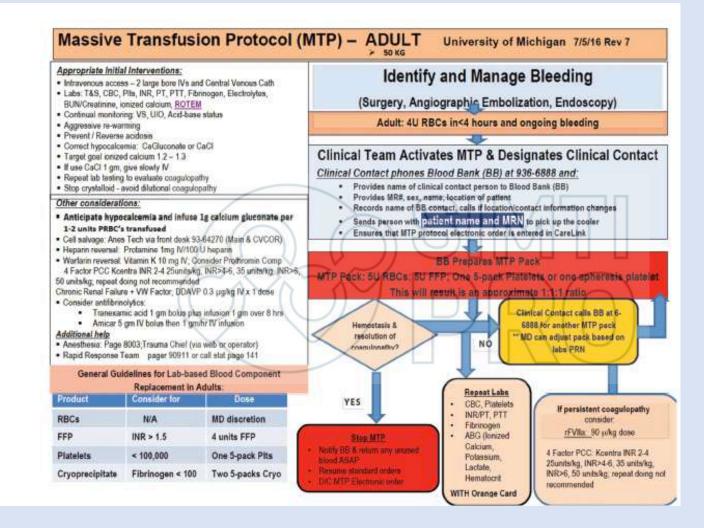
Grandone E, et al. Blood Transfus. 2020 Jan;18(1):13-19.

Trombosi e Supporto trasfusionale

Thurn L, Thromb Res 2018

Phenotypes in Trauma Induced Coagulopathy

- Distinct phenotypes exist in TIC, including 'Bleeding' or 'Thrombotic' phenotypes
- Distinct fibrinolysis phenotypes exist in TIC, including hyperfibrinolysis, normal, and fibrinolysis shutdown, with both abnormal phenotypes associated with higher mortality


Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

7[^] Conferenza Nazionale dei Servizi Trasfusionali Vicenza, 24-26 maggio 2023</sup>

Initial management

Initial management of severe bleeding requires early massive transfusion protocol (MTP) use and damage control resuscitation (DCR)

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Conferenza Nazionale dei Servizi Trasfusionali Vicenza, 24

Vicenza, 24-26 maggio 2023

Damage control resuscitation

DCR : A strategy of rapid control of hemorrhage and restoration of intravascular volume, which includes

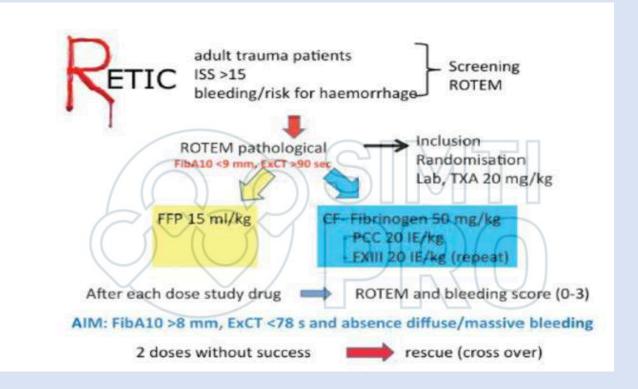
- minimizing blood loss
- keeping blood pressure at approximately 90 mm Hg until definitive hemostasis is achieved
- hemostatic balanced resuscitation with a 1:1:1 ratio of RBCs, plasma and platelets using MTP
- minimize crystalloid infusion
- hemostatic adjuncts to promote hemostasis at sites of injury.

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Damage control resuscitation

DCR : A strategy of rapid control of hemorrhage and restoration of intravascular volume, which includes

- minimizing blood loss
- keeping blood pressure at approximately 90 mm Hg until definitive hemostasis is achieved
- hemostatic balanced resuscitation with a 1:1:1 ratio of RBCs, plasma and platelets using MTP
- minimize crystalloid infusion
- hemostatic adjuncts to promote hemostasis at sites of injury.


Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Damage control resuscitation

DCR also includes important efforts to stop the bleeding (tourniquet, hemostatic dressings, direct pressure) and prioritize definitive surgical or angiographic hemostasis.

Cannon JW. Hemorrhagic Shock. NEJM 2018

RETIC trial

Innerhofer P, et al. Lancet Haematol. 2017 Jun;4(6):e258–e271.

RETIC: main findings

- The odds for receiving massive transfusion were 3-fold higher with plasma (NNT 5.7, i.e. 10 of 57 patients treated initially with FFP would need MT which would not have occurred with initial coagulation factor treatment).
- In-hospital mortality was low at 7.4% and similar in both groups

Innerhofer P, et al.Lancet Haematol. 2017 Jun;4(6):e258–e271

Bleeding control bundle of care

- Prehospital plasma resuscitation
- Hospital Damage Control Resuscitation
- Hospital Massive Transfusion Protocol
- Tranexamic acid (TXA) for patients with severe hemorrhagic shock and fibrinolysis
- Coagulation monitoring with conventional coagulation testing and viscoelastic testing (ROTEM/TEG)
- Early definitive hemorrhage control (decrease time to operating room/interventional radiology)
- Goal-directed Hemostatic Resuscitation, individualized based on coagulation testing and ROTEM/TEG

Adapted from: Oyeniyi BT, et al. Injury. 2017 Jan;48(1):5–12.

DCR guidelines

 Early use of TXA in appropriate patients (bleeding phenotype, < 3 hours from injury, severe hemorrhagic shock, evidence of fibrinolysis)

- Calcium repletion in patients at risk of hypocalcemia
- Prevention of acidosis and hypothermia
- Expeditious delivery to a damage control surgical capability

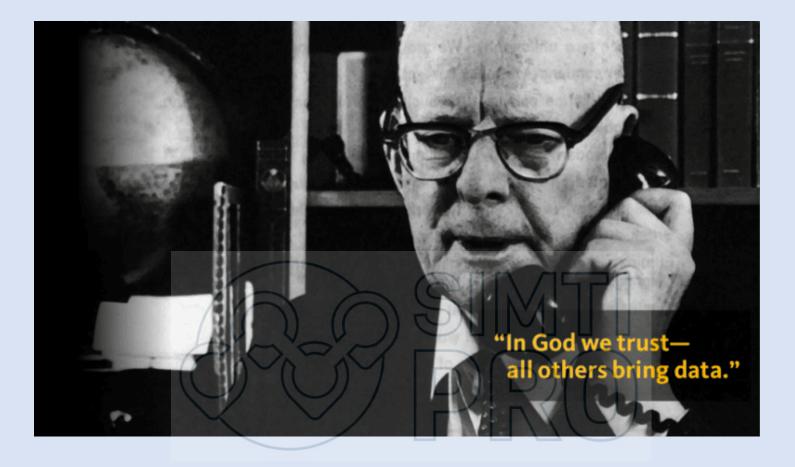
Joint Trauma System Clinical Practice Guideline (JTS CPG) for Damage Control Resuscitation 2019. <u>https://jts.amedd.army.mil/</u> assets/docs/cpgs/JTS_Clinical_Practice_Guidelines_(CPGs)/ Damage_Control_Resuscitation_12_Jul_2019_ID18.pdf. Accessed 2020 Jan 9.

Summary

- In patients with major bleeding, particularly those requiring massive transfusion, hemostasis may be significantly impaired.
- Tissue injury and systemic ischemia cause distinct impairments in several hemostatic mechanisms to induce coagulopathy (TIC) in the trauma patient.
- These include acquired quantitative and qualitative platelet defects, hypocoagulable and hypercoagulable states, and dysregulation of the fibrinolytic system.

Early diagnosis

Early diagnosis of hemostatic defects and coagulopathy is imperative in order to provide the best treatment strategy for stable clot formation and definitive control of hemorrhage.


Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

Among many open questions....

• What is the best laboratory test to diagnose hemostatic defects, coagulopathy and TIC?

- Is viscoelastic testing superior to conventional coagulation testing for TIC treatment?
- Are factor concentrates superior to blood component therapy for patients with coagulopathy?

Napolitano LM. . Expert Rev Hematol. 2021 Feb;14(2):219-239

W. Edwards Deming, 1900-1993